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Transport theorems, such as that named after Reynolds, are an important tool in the field
of continuum physics. Recently, Seguin and Fried used Harrison’s theory of differential
chains to establish a transport theorem valid for evolving domains that may become
irregular. Evolving irregular domains occur in many different physical settings, such as
phase transitions or fracture. Here, emphasizing concepts over technicalities, we present
Harrison’s theory of differential chains and the results of Seguin and Fried in a way
meant to be accessible to researchers in continuum physics. We also show how the trans-
port theorem applies to three concrete examples and approximate the resulting terms
numerically. Furthermore, we discuss how the transport theorem might be used to
weaken certain basic assumptions underlying the description of continua and the chal-
lenges associated with doing so. [DOI: 10.1115/1.4026910]
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1 Introduction

Most students of mechanics are aware of the Reynolds [1]
transport theorem, which can be stated as follows: Let R be a spa-
tial region that convects with a moving body whose evolution is
described by a velocity field v, and let u be a time-dependent sca-
lar field defined on R. The derivative with respect to time of the
integral of u overR is then given by

ð
R

u dv

:

¼
ð
R

u0 dvþ
ð
@R

uv � m da; (1)

where the superposed dot denotes the time-derivative, the prime
denotes the partial time-derivative, and m is the exterior unit-
normal to the boundary @R of R. Eq. (1) is known as the Reyn-
olds transport identity. The proof of the Reynolds [1] transport
theorem is not inherently difficult and can be found in many pla-
ces, such as the book by Gurtin et al. [2]. Among other things, this
theorem is used in the conversion of integral statements of balance
to local field equations.

For a time-dependent control volume P with boundary @P that
migrates with a scalar normal-velocity V@P , in the direction of its
exterior unit-normal m, potentially different from the normal com-
ponent v � m of the restriction of velocity v of the underlying body
to @P, the counterpart of Eq. (1) is

ð
P

u dv

:

¼
ð
P

u0 dvþ
ð
@P

uV@P da: (2)

If P is a convecting region, V@P ¼ v � m and Eq. (2) reduces to
Eq. (1). The Reynolds transport identity (1) is therefore a special
case of Eq. (2). To establish Eq. (2), first choose a “virtual veloc-
ity” v such that v � m ¼ V@P . Using this virtual velocity, the argu-
ment used to establish Eq. (1) can then be emulated to obtain Eq.
(2). However, it is important to keep in mind that the virtual ve-
locity associated with V@P is not unique. That there are infinitely
many such velocities with the same regularity as V@P follows
from a standard argument relying on the tubular neighborhood
theorem and bump functions (see, for example, Lee [3].)

More generally, there is a transport theorem for a k-dimensional
domain—that is, a k-dimensional manifold—evolving in an n-
dimensional Euclidean space. In this situation, a distinction can,
and should, be made between a convecting domain, such as that
appearing in Eq. (1), and a domain whose evolution is described
intrinsically, such as that appearing in Eq. (2). To describe the
evolution of a k-dimensional domain intrinsically when k< n, it is
necessary to specify not only the scalar normal-velocity of its
boundary in the direction of its exterior unit-normal but also the
(vector) normal velocity of the domain in the direction normal to
the domain—meaning that at each point on the domain, the (vec-
tor) normal velocity is orthogonal to the tangent space of the do-
main at that point. When k¼ n, only the scalar normal-velocity is
required. The transport theorem for a k-dimensional domain con-
tains three terms. Of these, two are analogous to those appearing
in Eq. (1) and Eq. (2) and the remaining one involves the extrinsic
curvature of the manifold—that is, the curvature of the manifold
associated with how it sits in the ambient Euclidean space. Equa-
tions (1) and (2) only have two terms because the extrinsic curva-
ture vanishes when the dimensions of the manifold and the
ambient space coincide. For a convecting k-dimensional domain
evolving in an n-dimensional Euclidean space, the relevant trans-
port theorem was established by Betounes [4]. Of particular inter-
est to workers in continuum physics are the cases k¼ 1, 2, 3 with
n¼ 3. Gurtin et al. [5] established the case analogous to Eq. (2)
for k¼ 2 and n¼ 3 and it appears that an extension of their proof
is possible for any evolving k-dimensional domain in an n-dimen-
sional Euclidean space.

The discussion thus far pertains to evolving domains that are
both smooth and smoothly evolving. However, it is easy to imag-
ine situations where smoothness breaks down. For example, a do-
main might become perforated, split into pieces, or have a
boundary that develops corners or cusps. Even worse, the fractal
dimension of a domain might change with time. A transport theo-
rem for such domains could be useful in various settings. Gurtin’s
[6] book on configurational forces illustrates applications of the
transport theorem involving interfaces and other defects. Catalan
et al. [7] discuss rough and fractal domain walls in thin films of
ferromagnets, ferroelectrics, and multiferroics. Stanley [8]
explores how fractals appear in physics and biology. In the calcu-
lus of variations, it is sometimes necessary to compute the varia-
tion of an integral in which both the integrand and the domain of
integration vary (with a scalar parameter that may be construed
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with time); for a survey of variational problems that involve mini-
mizing over a class of domains, see Bucur and Buttazzo [9].

Seguin and Fried [10] recently used Harrison’s [11] theory of
differential chains to establish a transport theorem for evolving
domains that exhibit the kind of irregularities described in the pre-
vious paragraph. The goal of the present paper is to present the
most salient features of that theorem together with simple applica-
tions, and to thereby demonstrate its utility. The paper is organ-
ized as follows. In Sec. 2, we review the essential features of
Harrison’s [11] theory of differential chains. Specifically, after
describing the most important properties of differential chains, we
explain how the space of differential chains is constructed. Vari-
ous differential operators on the space are then introduced. In
Sec. 3, we introduce the space of regularly evolving chains and
present the generalized transport theorem of Seguin and Fried
[10]. To illustrate the key steps in obtaining this transport theo-
rem, a proof is given in one space dimension. Section 4 considers
a special class of regularly evolving chains, called convecting
chains, and states the form of the transport theorem for such
chains. Then, in Sec. 5, we discuss various classical transport the-
orems that are consequences of the general transport theorem. In
Sec. 6, three concrete examples are used to demonstrate applica-
tions of the transport theorem. The first example involves calculat-
ing the area of an evolving region whose boundary is a fractal set.
The terms that arise upon applying the transport theorem are
approximated numerically and compared with the values obtained
by approximating the time-derivative of the area directly using
two different numerical schemes. The second example involves
calculating the rate of change of the circulation around a convect-
ing fractal curve. Once again, the terms encountered upon apply-
ing the transport theorem are approximated numerically. The third
and final example involves computing the rate of change of the
energy of a compressible neo-Hookean solid undergoing a defor-
mation that results in a change of topology—more specifically,
the formation of a hole. The rate of change of the energy is
obtained by applying the generalized transport theorem and the
resulting terms are approximated numerically. Finally, in Sec. 7,
we discuss the possible application of the roughened transport the-
orem to the study of nonsmooth bodies in continuum mechanics
and the difficulties associated with this problem.

2 The Theory of Differential Chains

Accessible surveys of the theory of differential chains, as pre-
sented in Harrison’s [11] comprehensive treatise, are provided by
Marzocchi [12] and Rodnay and Segev [13]. Here, we present a
heuristic account of only those aspects of the theory necessary to
understand the statement of the transport theorem of Seguin and
Fried [10].

We begin with a discussion of the relationship between differ-
ential chains and domains of integration, leaving the definition of
the space of differential chains to the second subsection. In the
third subsection, we discuss the Br norm that is used to define the
space of differential chains. In the final subsection, several opera-
tors on the space of differential chains that are needed later are
introduced.

2.1 Differential Chains and Domains. A differential chain
generalizes the notion of a domain of integration. This feature of
differential chains will be highlighted throughout this review. A
differential chain J has both a dimension and a class. The set of
all differential chains of dimension k and class Br is denoted bybBr

k. Here both k and r are natural numbers. The dimension of a dif-
ferential chain has a meaning similar in spirit to that of the dimen-
sion of a manifold. In particular, we will see that differential
chains can represent manifolds in a particular sense. The class of a
differential chain describes the extent to which a domain may be

irregular, which increases with the value of r. Elements of bBr
k are

called differential k-chains of class Br, differential k-chains or,
sometimes, when there is no basis for confusion, chains.

The space bBr
k is not only a linear space but is also a Banach

space. Although this property is inconsistent with the idea that
chains are like domains of integration, it forms the basis for one
of the great strengths of the theory of differential chains. The

norm on the space bBr
k, called the Br norm, is discussed in detail in

Subsec. 2.3. This norm is very important in that it allows the
theory to work. There have been other attempts to find a Banach
space, whose elements can be thought of as domains of integra-
tion, such as the spaces of sharp and flat chains developed by
Whitney [14], but these spaces have various drawbacks that are
not shared by the space of differential chains.1 It is necessary to
consider differential chains of various dimensions as well as
classes and, hence, to avoid restricting attention to any particular
values of k and r.

Since bBr
k is a Banach space, we may consider its (topological)

dual Br
k :¼ ðbBr

kÞ
0
, which is called the space of cochains. Harrison

[11] showed that this space is isometric to the space of differential
k-forms of a certain regularity, the regularity depending on the
value of r—specifically, the larger the value of r, the smoother the
differential form. Since the isometry between cochains and differ-
ential forms is natural, we do not explicitly denote the isometry

that associates a differential form with a cochain and treat bBr
k as a

space of differential forms. For r� 1, bBr
k consists of differential

forms of class Cr–1 whose r – 1 directional derivatives are Lip-

schitz continuous. The space bB0
k consists of bounded differential

k-forms.
In keeping with the idea that chains represent domains of inte-

gration, we denote the dual pairing between a differential form
and a chain with an integral symbol decorated by a slash:ð

=
J

x :¼ xðJÞ for all J 2 bBr
k; x 2 Br

k (3)

The left-hand side of Eq. (3) should be read as “the integral of x
over J.”

The notion that chains correspond to domains of integration can
be made precise. Specifically, Harrison [11] proved that given any
compact, Lipschitz manifoldM of dimension k, there is a k-chain
of class B1 that representsM in the sense thatð

M
x ¼

ð
=

J

x for all x 2 B1
k (4)

where the integral over M is to be interpreted in the classical
sense of Riemann. This result can be interpreted as saying that
chains may represent domains in the context of integration.

It is important to realize that not all chains represent classical
domains—that is, manifolds. For example, Harrison [15] showed
that chains may represent fractals, such as the Sierpinski triangle.

2.2 Constructing the Space of Chains. We have thus far dis-
cussed how chains generalize the notion of a domain of integra-
tion. Although a detailed account of the technical features of the
construction of the space of chains is beyond the scope of the
present work, a rough picture of the characteristics of that space is
not only necessary but also provides insight. Moreover, differen-
tial chains are constructed in a very geometric way and, thus, are
visualizable. Here, we outline the main ideas underlying the con-
struction, always keeping in mind the connection between chains
and domains.

The construction of the space bBr
k norm of differential k-chains

of class Br can be broken into four stages beginning with the intro-
duction of simple chains, which are subsequently used to build

1For a discussion of these drawbacks, see the introduction of Harrison [11].
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more complicated objects until, at the final stage, the full space of
differential chains emerges. At each stage, we will emphasize
how the chains involved can be thought of as domains.

We work in an n-dimensional Euclidean (point) space E with
associated vector space V. A simple k-chain consists of a point p
in E and a skew k-form a and is designated by the pair (p; a). The
pair (p; a) should be thought of as the skew form a attached to the
point p. Even this simple object can be thought of as a domain, an
infinitesimal domain. This can be seen by considering specific
cases of k. If k¼ 1, a can be identified with a vector, which repre-
sents an infinitesimal line element. If k¼ 2, a represents an infini-
tesimal area element. More generally, a skew k-form represents an
infinitesimal k-dimensional content element.2 Although these in-
finitesimal elements are oriented, we will not stress this fact here.
Thus, the simple chain (p; a) can be thought of as an infinitesimal
k-dimensional domain located at p.

Since (p; a) is a chain, it can be paired with a differential form.
Put another way, it is possible to integrate, in the sense of Eq. (3),
a differential form x over (p; a), givingð

=
ðp;aÞ

x ¼ xðpÞ � a (5)

where the dot denotes the normalized inner-product between skew
k-forms. Specifically, the inner-product is normalized so that, for
example, in the case n¼ 3 and k¼ 2, if fe1; e2; e3g is an orthonor-
mal basis for V, then fe1 ^ e2; e2 ^ e3; e3 ^ e1g is an orthonormal
basis for the space of skew 2-forms.

The next step in the construction of the space of differential
chains involves considering linear combinations

A ¼
X
i2I

ðpi; aiÞ (6)

of simple k-chains. Here I is a finite index set and (pi; ai) is, for
each i in I, a simple chain. It is assumed that chains are linear in
their second argument, meaning that

aðp; aÞ þ bðp; bÞ ¼ ðp; aaþ bbÞ (7)

where a and b are scalars and a and b are skew k-forms, which is
why no loss of generality results by choosing each coefficient in
the linear combination (6) to equal unity. Chains constructed in
accord with Eq. (6) are called Dirac k-chains. The best way to vis-
ualize a Dirac chain is to consider it as a finite collection of simple
chains—that is, a finite collection of points in space to each of
which a skew k-form is attached. A Dirac chain can also be
thought of as a discrete approximation of a classical domain. To
see this, consider a smooth curve in E of length L; see Fig. 1(a).
Let c : ½0;L� ! E be an arc-length parameterization of said curve.
Fix a natural number m. For each i ¼ 0;…; 2m � 1, the simple
chain ðcðiL2�mÞ; _cðiL2�mÞL2�mÞ can be thought of as an infinitesi-
mal line element attached to the point cðiL2�mÞ that is tangent to
the curve. Thus, the Dirac 1-chain

Am :¼
X2m�1

i¼0

ðcðiL2�mÞ; L2�m _cðiL2�mÞÞ (8)

can be thought of as a discrete approximation of the curve; see
Fig. 1(b).

Since the action of a differential form on chains is linear, it fol-
lows easily from Eq. (5) that the action of a differential form x on
a Dirac chain of the form Eq. (6) yieldsð

=
A

x ¼
X
i2I

xðpiÞ � ai (9)

If the Dirac chain under consideration represents a discrete
approximation of a domain, then the sum on the right-hand side of
Eq. (9) can be thought of as a Riemann sum. In fact, on recalling
the sequence fAm;m ¼ 1; 2;…g of Dirac chains Am defined in
Eq. (8), the limit given by

lim
m!1

ð
=

Am

x ¼ lim
m!1

X2m�1

i¼0

L2�mxðcðiL2�mÞÞ � _cðiL2�mÞ (10)

is seen to be a limit of Riemann sums and, therefore, converges to
the classical integral of x over the curve parameterized by c.

The third step in the construction of the space of differential
chains involves introducing a norm on the linear space of Dirac
chains. For each natural number r, it is possible to define the Br

norm. In the next subsection, we provide some insight regarding
the nature of this norm.

Finally, the completion of the linear space of Dirac k-chains

with respect to the Br norm is the space bBr
k of differential k-chains

of order Br. As indicated previously, chains may represent classi-
cal domains—in the context of integration, as described by
Eq. (4)—and nonclassical domains, such as fractals. Although a
chain may represent a domain, it is important to keep in mind that
a chain is more than a domain. Domains are sets, chains are not.
Although it is possible to associate to each chain a set, called its
support, this set does not completely characterize the chain.3 In
fact, given any compact set X, there are infinitely many chains
with support X.

2.3 On the Br Norm. As in the definition of any Banach

space, the norm used to define bBr
k is of pivotal importance. The

subject of geometric integration theory has a history of using
norms that do not easily lend themselves to interpretation, as is
evident on considering the flat, sharp, and natural norms intro-
duced by Federer [16] and Whitney [14]. As Rodnay and Segev
[13] commented, actual computations using these norms can be
complicated. Unfortunately, the Br norm is no different. In this
subsection, the Br norm is specified explicitly for small values of r
and a strategy for generalizing the Brnorm for larger r is described.
An alternate characterization of this norm is also provided and the

Fig. 1 The curve c and an approximation of it by a Dirac chain. (a) The curve c. (b) A
depiction of A3, which approximates c.

2Also known as a k-dimensional volume element. 3The support of a chain is always a compact set.
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utility of this characterization for establishing results concerning
differential chains is demonstrated in the context of an example.

To begin, the notion of the mass norm aj j of a skew k-form a is
required. This norm takes the form

aj j :¼ inf
X
i2I

aij je j a ¼
X
i2I

ai; ai simple

( )
(11)

where aij je denotes the Euclidean norm of ai and I is a finite
index set. The B0 norm of a simple chain A is given by

kAkB0 :¼ inf
X
i2I

jaij j A ¼
X
i2I

ðpi; aiÞ
( )

(12)

It is important to emphasize that the infimum in Eq. (12) is taken
over all possible ways of representing A as a finite sum of simple
chains. The B0 norm coincides with the mass norm defined on
chains (see Whitney [14]). This norm is insensitive to the points
pi, with i in I, used to define A (see Eq. (6))—insensitive in the
sense that if

A0 ¼
X
i2I

ðp0i; aiÞ (13)

is another Dirac chain, then kAkB0 ¼ kA0kB0 . Because of this, the
B0 norm does not appear to be very useful.

The B1 norm, on the other hand, is sensitive to the points used
to define A. To specify this norm, first define for every vector u

Duðp; aÞ :¼ ðpþ u; aÞ � ðp; aÞ (14)

This operation, called the difference through u, on the simple
chain (p, a) is depicted in Fig. 2(a) and can be defined on any
Dirac chain by requiring that it be linear. One possible way to
think of Duðp; aÞ is as a dipole. The B1 norm of a simple chain A
is defined by

kAkB1 : ¼ inf

�X
i02I0

ai0j j þ
X
i12I1

ui1j j ai1j j

j A ¼
X
i02I0

ðpi0
; ai0Þ þ

X
i12I1

Dui1
ðpi1 ; ai1Þ

�
(15)

That the foregoing defines a norm is a nontrivial result. To appre-
ciate the difference between the B0 norm and the B1 norm, notice
that

kDuðp; aÞkB0 ¼ 2 aj j (16)

kDuðp; aÞkB1 � uj j aj j (17)

and, hence, that as u! 0;Duðp; aÞ goes to zero in the B1 norm
but not in the B0 norm.

The definition of the Br norm for r� 2 involves higher-order
differences. For example, in the definition of the B2 norm an infi-
mum over representations of A involving not only terms of the
form Duðp; aÞ but also terms of the form

DvDuðp; aÞ ¼ Dvððpþ u; aÞ � ðp; aÞÞ (18)

¼ ðpþ uþ v; aÞ � ðpþ u; aÞ
� ðpþ v; aÞ þ ðp; aÞ (19)

which can be viewed as a quadrupole, as seen in Fig. 2(b). The
explicit formula for the Br norm for higher values of r is not
provided here. The interested reader is encouraged to consult
Harrison [11] for further details.

It is also possible to characterize the Br norm by using a norm
on the space of differential forms. This norm is the dual norm on
Br

k induced by the Br norm and is given by

kxkBr :¼ sup
jxðJÞj
kJkBr

j J 2 bBr
k; J 6¼ 0

� �
(20)

This norm has two important properties. For all x in Br
k

(P1) supx2E xðxÞj j � xk kBr , and
(P2) the Lipschitz constants of all directional derivatives of x

up to order r – 1 are bounded above by kxkBr .

Moreover, by the Hahn–Banach theorem, the Br norm on Br
k

determines the Br norm on bBr
k through the formula

kJkBr ¼ sup
jxðJÞj
kxkBr

j J 2 bBr
k; J 6¼ 0

� �
(21)

It transpires that Eq. (21) and the properties (P1) and (P2) are
sufficient to prove a number of things about differential chains.
In support of this assertion, we sketch a proof that the sequence
of Dirac chains defined in Eq. (8) converges to the curve c in
the B1 norm. The first step toward this involves showing that the
sequence defined in Eq. (8) is Cauchy in the B1 norm. To
achieve this, first notice that for natural numbers m and n and x
in B1

1

xðAmþn � AnÞj j ¼ j
X2nþm�1

j¼0

L2�m�nxðcðjL2�m�nÞÞ � _cðjL2�m�nÞ

�
X2n�1

i¼0

L2�nxðcðiL2�nÞÞ � _cðiL2�nÞj (22)

Fig. 2 (a) Depiction of Du(p; a). The arrow on the right-hand side illustrates –(p; a), the op-
posite of the original chain (p; a), and the arrow on the left-hand side illustrates (p þ u; a),
which is a translation of (p; a). (b) Depiction of DvDu(p; a). The arrow on the upper right
depicts the original chain (p; a) and the other arrows illustrate chains obtained from this
one by translation and inversion.
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¼ j
X2m�1

i0¼0

X2n�1

i¼0

L2�m�nxðcðði2m þ i0ÞL2�m�nÞÞ � _cðði2m þ i0ÞL2�m�nÞ

�
X2m�1

i0¼0

X2n�1

i¼0

L2�m�nxðcðiL2�nÞÞ � _cðiL2�nÞj

¼
X2m�1

i0¼0

X2n�1

i¼0

L2�m�njxðcðði2m þ i0ÞL2�m�nÞÞ � _cðði2m þ i0ÞL2�m�nÞ

� xðcðiL2�nÞÞ � _cðiL2�nÞj (23)

Adding and subtracting the term

xðcðiL2�nÞÞ � _cðði2m þ i0ÞL2�m�nÞ (24)

within the absolute value of the summand in Eq. (23) and using
property (P1) and the fact that c is an arc-length parameterization
allows us to bound the absolute value in the summand of Eq. (23)
by

xðcðði2m þ i0ÞL2�m�nÞÞ � xðcðiL2�nÞÞj j
þ kxkB1 _cðði2m þ i0ÞL2�m�nÞ � _cðiL2�nÞj j (25)

Substituting Eq. (25) into Eq. (23) and using Property (P2) yields

xðAmþn � AnÞj j
� LkxkB1 sup

i;i0
cðði2m þ i0ÞL2�m�nÞ � cðiL2�nÞj j

þ LkxkB1 sup
i;i0

_cðði2m þ i0ÞL2�m�nÞ � _cðiL2�nÞj j (26)

Since c is continuously differentiable, it follows from Eq. (21) and
Eq. (26) that

lim
n!1
kAmþn � AnkB1 ¼ 0 (27)

and, hence, that Eq. (8) defines a Cauchy sequence. This leads to
the conclusion that Am converges to some element J in bB1

1 as m
tends to infinity. To see that J represents c in the sense of Eq. (4),
it suffices to consult Eq. (10) and the surrounding discussion.

2.4 Operators on Differential Chains. Since differential
chains of a fixed dimension and class form a Banach space, it is
possible to define continuous linear mappings—or operators—that
act on them. While some of these operators are analogous to oper-
ators defined on sets, others are not.

Two operators that have no classical analog are required to
understand the generalized transport theorem. The first of these,
called the prederivative, resembles the directional derivative. Fix
a vector a and consider the expression

Paðp; aÞ :¼ lim
h!0

ðpþ ha; aÞ � ðp; aÞ
h

(28)

where the limit is taken in the B2 norm. That the limit in Eq. (28)
exists is nontrivial. Here, the mapping Pa, called the prederivative
in the direction a, is only defined on simple chains; however, it
can be extended to any chain—first, by linearity, to Dirac chains
and then, by continuity, to a general chain. Once this has been
achieved, the prederivative becomes an operator of the form

Pa : bBr
k ! bBrþ1

k (29)

Thus, the prederivative of a chain of dimension k and class Br

leaves the dimension unchanged but raises the class to Brþ 1. The
notation

ðp; a� aÞ :¼ Paðp; aÞ (30)

is sometimes useful. Let rax denote the directional derivative of
x in the direction a—that is

raxðxÞ : ¼ lim
h!0

xðxþ haÞ � xðxÞ
h

for all x 2 E (31)

It can be shown thatð
=
ðp;a�aÞ

x ¼
ð
=
ðp;aÞ
rax for all x 2 Brþ1

k (32)

Some insight as to why the prederivative increases the class of
a chain (see Eq. (29)) emerges on considering Eq. (32), which
states that the dual of the prederivative is the partial derivative op-
erator on differential forms. Since taking a partial derivative
decreases the regularity class—that is, from Cr to Cr–1—of a dif-
ferential form by one, by duality, the prederivative must increase
the class by one.

Another valuable operator is called the extrusion. Given a vec-
tor a, the extrusion Ea in the direction a of a simple chain (p; a) is
defined by

Eaðp; aÞ :¼ ðp; a ^ aÞ (33)

Just as with the prederivative, the extrusion can be extended to
Dirac chains by linearity and then to all differential chains by con-
tinuity so that

Ea : bBr
k ! bBr

kþ1 (34)

Thus, the extrusion of a chain of dimension k and class Br raises
the dimension to kþ 1 but leaves the class unchanged.

One way to think about the extrusion is as follows. Let J be the
differential 2-chain that represents a 2D square in three dimen-
sions and let a be a vector that is perpendicular to the square. The
differential 3-chain EaJ can be interpreted as a thickened version
of the square with infinitesimally small width in the a direction.

It is possible to define the extrusion in the case where the vector
a is replaced by a vector field v of sufficient regularity. Under
these circumstances, Eq. (33) becomes

Evðp; aÞ :¼ ðp; vðpÞ ^ aÞ (35)

Moreover, similar to Eq. (32)ð
=

Evðp;aÞ
x ¼

ð
=
ðp;aÞ

ivx for all x 2 Br
kþ1 (36)

where ivx is the interior product of x with respect to v.
The prederivative operator can be used to construct the bound-

ary operator. Consider a simple k-chain (p; a), where a is simple,
so that there are vectors ai such that

a ¼ ^
k

i¼1
ai (37)

Put âi :¼ ^ k
j¼1;j6¼i aj. The boundary of (p; a) is defined by

@ðp; aÞ :¼
Xn

j¼1

Xk

i¼1

ð�1Þiþ1ðp; ej � ðai � ejÞâiÞ (38)

It is possible to extend the boundary to an operator on all differen-
tial chains by continuity so that

@ : bBr
k ! bBrþ1

k�1 (39)

Notice that the boundary of a chain of dimension k and class r is a
chain of dimension k – 1, as might be expected, and class Brþ 1.
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Recall that the class of a chain can be thought of as a measure of
the regularity of the chain—the larger the value of r, the greater
the potential irregularity of the chain. To see why the boundary of
a chain might increase the irregularity of a chain, consider the fol-
lowing example. A unit square in two dimensions is a smooth
manifold and, hence, admits a representation as a 2-chain. The
boundary of the square is not a smooth manifold, but only the
union of (four) smooth manifolds. Hence, the boundary of a
smooth domain may be a nonsmooth domain. A more extreme
example is the following. Consider an open set of a Euclidean
space. Being a manifold, that set admits a representation as a
chain. The boundary of the open set can be highly irregular, but
the boundary of the corresponding chain is well-defined and can
be “integrated over” in the sense that it can be paired with a differ-
ential form.

That the boundary operator agrees with the classical notion of
boundary is clear from the following. Consider a manifold M
with boundary @M. If J representsM, in the sense made precise
in Eq. (4), then @J represents @M.

On using d to denote the exterior derivative, the boundary oper-
ator @ satisfies the relationð

=
@J

x ¼
ð
=

J

dx for all J 2 bBr
k; x 2 Brþ1

k�1 (40)

which generalizes Stokes’ theorem. Since the integrals in Eq. (40)
are dual pairings, Eq. (40) embodies the notion that the adjoint of
the boundary operator @ on chains is the exterior derivative on
forms.

For readers familiar with currents, there is nothing new to the
observation that Stokes’ theorem is a statement pertaining to
adjoints. However, there is a subtle but important difference
between the ways in which the boundaries of currents and chains
are defined. Whereas the boundary of a current is defined via the
adjoint of the exterior derivative, the boundary of a differential
chain is defined independently and the adjoint of the boundary is
shown to be the exterior derivative. Although it holds by defini-
tion for currents, Stokes’ theorem must be proven for chains.

Another operator that is related to an operation that can be
applied to a classical domain is the push-forward. Given a smooth
function f : E ! E, it is possible to define the push-forward

f� : bBr
k ! bBr

k (41)

induced by f. If a chain represents a domain, then its push-forward
represents the image of the domain under the mapping f. The
push-forward f*J of a chain J can therefore be considered as the
image of the chain under f.

There are many other interesting operators that act on differen-
tial chains, but the operators mentioned in this section are the only
ones that are needed to understand the transport theorem of
Seguin and Fried [10]. The interested reader is encouraged to con-
sult the work of Harrison [11] for more information concerning
operators on differential chains.

3 The Generalized Transport Theorem

In this section, the generalized transport theorem of Seguin and
Fried [10] is presented. Fundamentally, a transport theorem yields
an expression for the rate of change of an integral in which both
the domain of integration and the integrand may depend on time.
Since domains of integration admit representations as differential
chains, the main idea is to represent the evolving domain with a
time-dependent differential chain. Thus, a transport theorem
should yield an expression for ð

=
J

x

:

(42)

where J is a time-dependent differential k-chain and x is a time-
dependent skew k-form of matching class. If both J and x are dif-
ferentiable in time, then, since the integral in Eq. (42) is a dual
pairing, Harrison’s [11] “generalized Leibniz rule”

ð
=

J

x

:

¼
ð
=

J

_xþ
ð
=

_J

x (43)

follows as a consequence of the product rule.
Notice that, due to the absence of a term involving the bound-

ary, the result (43) differs from the transport identities (1) and (2)
mentioned in the introduction. Moreover, it is unclear how a
boundary term might be extracted from the right-hand side of
Eq. (43). For these reasons, it seems appropriate to refer to the
generalized Leibniz rule as a proto-transport theorem. To deduce
a version of Eq. (43) involving the boundary requires additional
assumptions on the time-dependent chain J. We consider a sub-
space of the space of all time-dependent chains defined using a
specific norm. The reason for using this particular norm will be
explained later in this section. The elements of this subspace are
called regularly evolving differential chains and the collection of
all such objects is denoted by bBr

k½I�. Here, I denotes a compact
interval of R consisting of more than one point which represents
the expanse of time over which the chain evolves.

To illustrate the salient points in the proof of the generalized
transport theorem and the construction of the space bBr

k½I�, we, for
the moment, restrict ourselves to the case n¼ 1 and k¼ 1. Since
n¼ 1, the ambient Euclidean space E is taken to be the space R of
real numbers.

Let e be the unit vector pointed in the positive direction. A sim-
ple 1-chain can be written as

ðx; aeÞ (44)

where x and a are numbers. An evolving simple 1-chain has the
form Eq. (44) except that x and a are C1 functions of time defined
on the interval I. In an analogous way, (x; a) denotes an evolving
simple 0-chain. Moreover, a time-dependent differential 1-form
can be written as

f e (45)

where f is a time-dependent scalar-valued function. In this one
dimensional setting, evaluating Eq. (43) at time t with the choices
J ¼ ðx; aeÞ and x ¼ f e gives

ð
=
ðx;aeÞ

f e

:

ðtÞ ¼
ð
=
ðxðtÞ;aðtÞeÞ

_f ðtÞeþ
ð
=
ðx;aeÞ

:

ðtÞ
f ðtÞe (46)

The second term on the right-hand side of Eq. (46) involves the
expression

ðx; aeÞ
:

ðtÞ :¼ lim
s!0

ðxðtþ sÞ; aðtþ sÞeÞ � ðxðtÞ; aðtÞeÞ
s

(47)

where the limit is taken in the B2 norm. This derivative satisfies

ðx; aeÞ
:

ðtÞ ¼ ðxðtÞ; _xðtÞe� aðtÞeÞ þ ðxðtÞ; _aðtÞeÞ (48)

To establish Eq. (48), it must be shown that

1

jsj kðxðtþ sÞ; aðtþ sÞeÞ � ðxðtÞ; aðtÞeÞ

� sðxðtÞ; _xðtÞe� aðtÞeÞ � sðxðtÞ; _aðtÞeÞkB2 (49)

050802-6 / Vol. 66, SEPTEMBER 2014 Transactions of the ASME



goes to zero as s goes to zero. Toward this end, add and subtract
the terms

ðxðtÞ þ s _xðtÞe; aðtÞeÞ (50)

ðxðtþ sÞ; aðtÞeÞ (51)

ðxðtþ sÞ; s _aðtÞeÞ (52)

within the norm in Eq. (49) and invoke the triangle inequality to
find that Eq. (49) is bounded above by

1

jsjkðxðtÞ þ s _xðtÞe; aðtÞeÞ � ðxðtÞ; aðtÞeÞ

� sðxðtÞ; _xðtÞe� aðtÞeÞkB2 (53)

þ 1

jsj kðxðtþ sÞ; aðtÞeÞ � ðxðtÞ þ s _xðtÞe; aðtÞeÞkB2 (54)

þ 1

jsj kðxðtþ sÞ; s _aðtÞeÞ � sðxðtÞ; _aðtÞeÞkB2 (55)

þ 1

jsj kðxðtþ sÞ; aðtþ sÞe� aðtÞe� s _aðtÞeÞkB2 (56)

The term in Eq. (53) tends to zero by Eq. (28), the term in Eq.
(54) tends to zero by the differentiability of x, the term in Eq. (55)
tends to zero by the continuity of x, and the term in Eq. (56) tends
to zero by the differentiability of a. This establishes Eq. (48).

On the right-hand side of Eq. (48), the first term involving the
prederivative can be thought of as the derivative of the first argu-
ment of ðx; aeÞ with respect to time and the second term can be
thought of as the derivative of the second argument of ðx; aeÞ with
respect to time. The relation (48) therefore possesses the charac-
teristics of a product rule. The two terms on the right-hand side of
Eq. (48) are important enough to be given their own symbols.
Define

Ptðx; aeÞ :¼ ðxðtÞ; _xðtÞe� aðtÞeÞ (57)

Gtðx; aeÞ :¼ ðxðtÞ; _aðtÞeÞ (58)

It is also useful to define a similar mapping

Etðx; aÞ :¼ ðxðtÞ; _xðtÞaðtÞeÞ (59)

on evolving 0-chains. It is interesting that Pt is related to the
boundary operator @ through

Ptðx; aeÞ ¼ Et@ðx; aeÞ (60)

This identity holds because using Eq. (39) and Eq. (59) yields

Et@ðx; aeÞ ¼ Etðx; e� aÞ ¼ ðxðtÞ; _xðtÞ � aðtÞeÞ ¼ Ptðx; aÞ (61)

In view of Eqs. (48), (57), (58), and (60), the one-dimensional
proto-transport identity (46) becomes a transport identity for the
evolving simple chain ðx; aeÞ with the form

ð
=
ðx;aeÞ

f e

:

ðtÞ ¼
ð
=
ðxðtÞ;aðtÞeÞ

_f ðtÞe

þ
ð
=

Et@ðx;aeÞ
f ðtÞeþ

ð
=

Gtðx;aeÞ
f ðtÞe (62)

Versions of the transport identity (62) for more complicated
evolving chains can also be established. To achieve this, start by
considering linear combinations

A ¼
X
i2I

ðxi; aieÞ (63)

of evolving simple chains, which are known as evolving Dirac
chains. Despite the superficial resemblance between Eqs. (6) and
(63), it is important to realize that, aside from the fact that n and k
in Eq. (6) are arbitrary, the quantity A determined by Eq. (63) is
time dependent, in contrast to its counterpart appearing in Eq. (6).
By linearity, the mappings Pt, Gt, and Et, each of which is defined
on evolving simple chains, can be defined on evolving Dirac
chains. It follows that Eq. (60) holds with ðx; aeÞ replaced by A
and, hence, that there is a transport identity for Dirac chains of the
form ð

=
A

f e

:

ðtÞ ¼
ð
=

AðtÞ
_f ðtÞeþ

ð
=

Et@A

f ðtÞeþ
ð
=

GtA

f ðtÞe (64)

The final step required to obtain the generalized transport theo-
rem is to introduce the C1

r norm on the vector space of Dirac 1-
chains. The superscript in C1

r is not related to the dimension of the
chain but rather is related to the fact that any Dirac 1-chains can
be built up using C1 functions. The underlying details of this norm
are not discussed here. The essential idea is to define the norm in
a way that ensures that the mappings Pt, Gt, and Et are continuous.
The completion of the space of Dirac 1-chains defined on the

interval of time I with respect to the C1
r norm is denoted by bBr

1½I�
and the elements of this space are called regularly evolving differ-

ential chains. By construction, given J in bBr
1½I�, there is a sequence

Am of evolving Dirac 1-chains of the form Eq. (63) such that

Am ! J (65)

in the C1
r norm as m goes to infinity.

To obtain a transport theorem for a regularly evolving differen-
tial chain J, begin by finding Am such that Eq. (65) holds. Since
Eq. (64) holds with A replaced by Am, taking the limit as m goes
to infinity yields

ð
=

J

f e

:

ðtÞ ¼
ð
=

JðtÞ
_f ðtÞeþ

ð
=

Et@J

f ðtÞeþ
ð
=

GtJ

f ðtÞe (66)

To summarize, for n¼ 1 and k¼ 1 the following four main steps
are needed to arrive at the generalized transport theorem:

(1) Prove that ðx; aeÞ
:

ðtÞ ¼ Ptðx; aeÞ þ Gtðx; aeÞ.
(2) Prove that Pt¼Et@.
(3) Establish the transport identity (62) for evolving simple

chains.
(4) Introduce the C1

r norm and take linear combinations and
limits in Eq. (62) to obtain Eq. (66).

To obtain the generalized transport theorem for arbitrary n and
k, the same four steps are required with one exception. Step 2
changes to proving that

Pt ¼ @Et þ Et@ (67)

The reason for this change is that Etðx; aeÞ ¼ 0, whereby in the
case n¼ 1 and k¼ 1, Eq. (67) reduces to Pt ¼ Et@. With this slight
change, the generalized transport theorem can be stated as
follows.

Theorem 3.1. Consider an evolving chain J in bBr
k½I� and a time-

dependent differentiable skew k-form x : I ! Brþ1
k . Then, for all t

in I,

ð
ð
=

J

x

:

ÞðtÞ ¼
ð
=

JðtÞ
_xðtÞ þ

ð
=

EtJ

dxðtÞ þ
ð
=

Et@J

xðtÞ þ
ð
=

GtJ

xðtÞ (68)
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The elements of the space bBr
k½I� can be thought of as time-

dependent chains. From this point onward, only regularly evolv-
ing chains are considered; for this reason, we often suppress the
modifier “regularly” when referring to such chains. Since chains
may represent domains, evolving chains may represent evolving
domains. Importantly, Seguin and Fried [10] showed that evolving
chains may represent domains that may become perforated, rip
into pieces, or lose regularity (as would occur, for instance, were
the boundary to develop corners or cusps). Seguin and Fried [10]
also showed that evolving chains may represent evolving fractal
domains. In particular, a domain that transitions from smooth to
fractal may also be represented by a regularly evolving chain.

4 Convecting Chains

The variety of evolving domains representable by regularly
evolving differential chains is very diverse. A very common type
of evolving chain is what we call a convecting chain. To generate
a convecting chain, it is necessary to have a reference chain JR,
that is independent of time, and a smooth mapping,

f : E 	 I ! E (69)

called a convection. It is useful to define

ft : E ! E by ftðxÞ :¼ f ðx; tÞ for all x 2 E (70)

We assume that ft is invertible for each t in I. Associated with the
convection is a velocity v : E 	 I ! V, defined by

vðx; tÞ :¼ lim
s!0

f ðf�1
t ðxÞ; tþ sÞ � f ðf�1

t ðxÞ; tÞ
s

for all ðx; tÞ 2 E 	 I

(71)

Similar to Eq. (70), we need the notation

vt : E ! V (72)

where

vtðxÞ :¼ vðx; tÞ for all ðx; tÞ 2 E 	 I (73)

Using the two objects f and JR and the push-forward described in
the paragraph containing Eq. (41), we may define a time-
dependent chain J by

JðtÞ :¼ ðftÞ�JR for all t 2 I (74)

If JR is of class Br and f is smooth enough, Seguin and Fried [10]
showed that J is in bBr

k½I�, where k is the dimension of JR. If the am-
bient space E is three-dimensional, so that n¼ 3, and JR represents
a regular region in E, then the convecting chain defined by
Eq. (74) represents the motion of the regular region under f. This
is the situation most often encountered in continuum physics.

When the evolving chain in Theorem 3.1 is the convecting
chain J, as defined in Eq. (74), Eq. (68) takes on a different form.
For such chains, Seguin and Fried [10] showed that

EtJ ¼ Evt
JðtÞ (75)

and

ðEt@ þ GtÞJ ¼ Evt
@JðtÞ (76)

Upon using Eqs. (36), (75), and (76), Eq. (68) becomes

ð
ð
=

J

xÞ
:

ðtÞ ¼
ð
=

JðtÞ
ð _xðtÞ þ ivt

dxðtÞÞ þ
ð
=
@JðtÞ

ivt
xðtÞ (77)

for all t in I. Here, it is important to keep in mind that _x is not
the material time-derivative of x, but rather is the derivative of

the function x : I ! Brþ1
k with respect to time. Instead of view-

ing x as a time-dependent differential form, it is possible to view
it as a mapping that assigns to each point x and time t the skew k-
form x(x, t). When this view is adopted the partial time-
derivative x0 of x becomes meaningful. In this case, Seguin and
Fried [10] demonstrated that x0 ¼ _x. For this reason, from now
on we will use the partial time-derivative notation. For example,
Eq. (77) can be rewritten, suppressing the dependence on time,
as ð

=
J

x

:

¼
ð
=

J

ðx0 þ ivdxÞ þ
ð
=
@J

ivx (78)

The result (78), which is closer in form to the classical results (1)
and (2) mentioned in the introduction, was proven independently
by Harrison [11] and Seguin and Fried [10].

It might initially seem surprising that the generalized transport
identity (68) contains one more term than the transport identity
(78) for convecting chains. This difference originates with the last
term on the right-hand side of Eq. (68). As is evident from
Eq. (58), this term describes how the (oriented) density of the
chain—that is, the ae part of Eq. (44)—changes in time. To see
this, consider a (time independent) differential chain J

8
and define

a time-dependent chain J by

JðtÞ :¼ aðtÞJ
 (79)

where a is a smooth scalar-valued function of time. It can be shown
that the J defined in Eq. (79) is a regularly evolving differential
chain and that for any time independent differential form x

8ð
=

J

x


:

ðtÞ ¼
ð
=

_aðtÞJ

x
 (80)

Of course, it is impossible for an evolving chain like Eq. (79) to
be a convecting chain unless k¼ 0. For a convecting chain in
which k 6¼ 0, the change in density is slaved to the manner in
which the chain moves through the ambient space because of Eq.
(74) and the way the push-forward of a differential chain is
defined. For additional detail regarding this issue, see Seguin and
Fried [10].

5 Classical Transport Theorems

Theorem 3.1 can be specialized to yield classical results involv-
ing regular domains and, thus, is a generalization of other well-
known transport theorems. These results follow from corollary
(78) rather than directly from Theorem 3.1. There are two similar
but different transport theorems for classical domains: one for
convecting domains and another for domains that evolve inde-
pendent of the motion of an underlying body, as with a phase
interface, crack, or other defect.

The setup for a convecting domain is similar to that of a con-
vecting chain. Let MR be a reference k-dimensional domain and
let f be a convection, as described in Sec. 4. These two objects
induce a convecting domainM defined by

MðtÞ :¼ ftðMRÞ for all t 2 I (81)

If JR is the differential chain that representsMR, then J(t), defined
by Eq. (74), represents MðtÞ for all t in I. Thus, Eq. (78) can be
used to prove that

ð
=
M

x

:

¼
ð
=
M
ðx0 þ ivdxÞ þ

ð
@M

ivx (82)
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where v is the velocity of the convection defined in Eqs. (72) and
(73). The details leading to this result are provided by Seguin and
Fried [10]. Also, for a direct proof of Eq. (82) without recourse to
chains, see Flanders [17].

It is important to remember that the differential forms consid-
ered so far are defined on all of Euclidean space E. Some applica-
tions, however, involve differential forms that are defined only on
an evolving domain. In this event, Eq. (82) cannot be used directly
since the derivative x0 is undefined. However, Eq. (82) can be
used to obtain a transport theorem involving such differential
forms. To state this result we need to introduce a few additional
concepts. Let lM denote the (time-dependent) content form for
the convecting domain M. Notice that for every differential k-
form x defined on M, there is a scalar function u such that
x ¼ ulM. We may introduce two different time derivatives for
u. The convection-dependent time-derivative du=dt of u is
defined by

du
dt
ðx; tÞ :¼ lim

s!0

uðftþsðf�1
t ðxÞÞ; tþ sÞ � uðx; tÞ

s
for all x and t such that x 2MðtÞ

(83)

In continuum physics, when f is a motion (or time-dependent de-
formation), this derivative is the material time-derivative. The

normal time-derivative u
(

of u is given by

u
(

:¼ du
dt
�rMvtan

u (84)

where rM is the covariant gradient onM and vtan is the compo-
nent of the velocity v that is tangent toM.4 On using this notation
and suppressing explicit dependence on time, the transport theo-
rem for a differential form only defined onM can be written as

ð
M

ulM

:

¼
ð
M
ðu( �kuðv � hÞÞlM þ

ð
@M

uðv � mÞl@M (85)

where h is the mean-curvature vector for M;l@M is the content
form for @M, and m is the outward unit-normal to @M. For a
proof of Eq. (85), see Betounes [4].

It should be emphasized that there are infinitely many referen-
ces and convections that generate any particular convecting do-
main. Sometimes, there may be a preferred reference or
convection. However, this is not always the case. For example, in
continuum physics, an evolving body is a convecting domain,
whose reference is called the reference placement and whose con-
vection mapping is called the motion of the body. Material surfa-
ces are also convecting domains since their evolution is described
by the motion of the body. The velocity of the surface in the
direction of its unit normal is given by ðv � nÞn, where v is the ve-
locity of the motion of the body. A nonmaterial surface, such as
the interface between two phases, generally evolves independ-
ently of the underlying body. Specifically, suppose that we have
an interface S whose evolution is described by the zero level-sets
of a function w : E 	 I ! R : SðtÞ ¼ fx 2 E jwðx; tÞ ¼ 0g.
Then, the velocity vS of the interface in the normal direction is
given by

vS ¼ �
w0

jrwjn (86)

In general, vS 6¼ ðv � nÞn. Because of this, it is desirable to have a
transport theorem for evolving domains that does not involve a

convection and, hence, a way of describing the evolution of a do-
main without relying upon a convection.

The evolution of a smooth domain can be described by two
mappings: a (vector-valued) normal velocity vM defined on M
and a scalar normal-velocity V@M defined on @M. Fix t in I. The
normal velocity vMðx; tÞ at a point x belonging toMðtÞ is a vec-
tor that is perpendicular to the manifoldMðtÞ at x and describes
the evolution of MðtÞ at x in the normal direction. The scalar
normal-velocity V@Mðx; tÞ at a point x belonging to @MðtÞ
describes the evolution of @MðtÞ in the outward-normal direc-
tion. It can be shown that the normal time-derivative of a scalar
field can be defined in this case as well. For a proof of this in the
case n¼ 3 and k¼ 2, see Cermelli et al. [19]. The general case
has an analogous proof. For an evolving domain described with
vM and V@M, the relevant transport identity takes the form

ð
M

ulM

:

¼
ð
M
ðu( �kuðvM � hÞÞlM þ

ð
@M

uV@Ml@M (87)

A proof of this result based on the roughened transport identity
(68) is provided by Seguin and Fried [10].

There are several special cases of Eq. (87) that are of particular
interest to researchers in continuum physics, all of which arise for
n¼ 3.

• If k¼ 3, so thatMðtÞ is a smooth region at each time t, then

ð
M

u dv

:

¼
ð
M

u0 dvþ
ð
@M

V@M da (88)

• If k¼ 2, so thatMðtÞ is a smooth surface at each time t, then

ð
M

u da

:

¼
ð
M
ðu( �2HuvM � nÞ daþ

ð
@M

uV@M dl (89)

where n is a unit normal to the surface and H is the (scalar)
mean-curvature.

• If k¼ 1, so thatMðtÞ is a smooth curve for all for time t, then

ð
M

u dl

:

¼
ð
M
ðu( �juvM � nÞ dlþ uV@Mjqp (90)

where n is the unit normal, j is the curvature, and p and q are
the endpoints of the curve.

While Eq. (88) is a generalization of Reynolds [1] transport the-
orem, (89) is known as the surface transport theorem and was first
proven by Gurtin et al. [5]. The surface transport theorem has
drawn considerable interest. See, for example, the work of Cer-
melli et al. [19], Fosdick and Tang [20], and Lidstr€om [21].
Another proof of the surface transport theorem, using the theory
of distributions, was provided by Estrada and Kanwal [22]. The
k¼ 1 case, for a planar curve, was proven by Angenent and Gurtin
[23].

There are other transport theorems that follow from Eq. (87)
and are of use in continuum physics. One such theorem arises on
choosing the density u so that the integrand involves a flux. Con-
sider a time-dependent vector field w.

• If k¼ 2, so thatMðtÞ is a smooth surface at each time t, then

ð
M

w � n da

:

¼
ð
M
ðw( �n� w � rMVM � 2Hðw � nÞVMÞ da

þ
ð
@M
ðw � nÞV@M dl (91)4The normal time-derivative, under a different name and in a more specific

setting, was first introduced by Thomas [18].
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where VM :¼ vM � n and H is the (scalar) mean-curvature

and the relation n
( ¼ �rMVM has been used.

• If k¼ 1, so thatMðtÞ is a smooth curve for all for time t, then

ð
M

w � t dl

:

¼
ð
M
ðw( �tþ w � ðrMt vM þ jðvM � nÞnÞ

� jðw � tÞvM � nÞ dlþ ðw � tÞV@Mjqp (92)

where t is the unit tangent, p and q are the endpoints of the
curve, and j is the curvature and the relation

t
(

¼ rMt vM þ jðvM � nÞn (93)

has been used.

6 Explicit Examples Evaluated Numerically

We previously noted that evolving chains may represent evolv-
ing domains and that these domains may be highly irregular. We
next give three explicit examples of evolving chains that represent
evolving domains in R2 and R3. We denote the associated stand-
ard basis vectors by e1, e2, and e3.

6.1 The Rate of Change of an Area of a Region With Frac-
tal Boundary. Consider the function h : ½0; x
� 	 ½0; 3t
=4� ! R
defined by

hðx; tÞ :¼ h

X1
n¼0

ð t

t

Þnsð2

nx

L
Þ

for all ðx; tÞ 2 ½0; x
� 	 ½0; 3t
=4� (94)

where sðyÞ :¼ minn2N jy� nj for all y 2 R; x
 and h
8

are charac-
teristic lengths, and t

8
is a characteristic time. To nondimensional-

ize the space and time variables, we define a new function
~h : ½0; 1� 	 ½0; 3=4� ! R by

~hðn; sÞ :¼ hðx
n; t
sÞ
h


for all ðn; sÞ 2 ½0; 1� 	 ½0; 3=4� (95)

The graph of ~hð�; sÞ is, for 1=2 � s � 3=4, called a Takagi–
Landsberg curve and has fractal dimension of 2þ log2s, as
explained by Mandelbrot [24]. (See Fig. 3.) For all s in [0, 3/4],
any natural number n, and 0 � i; j � 2n � 1, define q, c, and ar
such that

qði; j; s; nÞ :¼ ði2�n; ~hði2�n; sÞj2�nÞ (96)

cði; j; s; nÞ :¼ ~h0ði2�n; sÞj2�n (97)

arði; s; nÞ :¼ ~hði2�n; sÞ2�2n (98)

Seguin and Fried [10] show that the limit

J ¼ lim
n!1

X2n�1

i;j¼0

ðqði; j; �; nÞ; arði; �; nÞe1 ^ e2Þ (99)

of evolving chains converges (in the C1
2 norm)5 to the evolving

chain that represents the domain bounded by the n-axis and the
graph of ~h. It can also be shown that

EsJ ¼ 0 (100)

Es@J ¼ lim
n!1

X2n�1

i;j¼0

ðqði; j; s; nÞ; arði; s; nÞcði; j; s; nÞe2 � e1 ^ e2Þ

GtJ ¼ lim
n!1

X2n�1

i;j¼0

ðqði; j; s; nÞ; ar0ði; s; nÞe1 ^ e1Þ (101)

where ar0 is the derivative of ar with respect to s. Since
Ð

Je1 ^ e2

gives the (dimensionless) area of the domain bounded by the n-
axis and the graph of ~h, Eq. (68) can be used to compute the rate
of change of this integral as the graph of ~h evolves. Using Eqs. (5)
and (32), we find that

ð
ð
=

J

e1 ^ e2Þ
:

ðsÞ ¼
ð
=

JðsÞ
ðe1 ^ e2Þ0 þ

ð
=

EsJ

dðe1 ^ e2Þ

þ
ð
=

Es@J

e1 ^ e2 þ
ð
=

GtJ

e1 ^ e2 (102)

¼ lim
n!1

X2n�1

i;j¼0

ar0ði; s; nÞ (103)

¼ lim
n!1

X2n�1

i¼0

~h
0ði2�n; sÞ2�n (104)

Fig. 3 Graph of ~h at various times. These graphs also appear in Seguin and Fried [10]. (a) Graph of ~hð�; 1=4Þ. (b) Graph of
~hð�;3=5Þ.

5This norm is mentioned very briefly, without details, in Sec. 3.
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For future reference, let

_A
ðnÞ
TT :¼

X2n�1

i¼0

~h
0ði2�n; sÞ2�n (105)

For any given value of s, it is straightforward to find an approx-
imate value for the limit on the right-hand side of Eq. (104) by

computing _A
ðnÞ
TT for several different values of n and examining

whether its values appear to converge with increasing n. Results
of this kind are depicted in Fig. 4. Figures 4(a) and 4(b) indicate
that for s small and less than 1/2, in which case the boundary of
the region is not fractal, a relatively small n is sufficient to achieve
convergence. However, Figs. 5(a) and 5(b) also show that for s
closer to 3/4 the value of n necessary to achieve convergence
increases significantly.

For comparison, the left-hand side of Eq. (102) can be deter-
mined directly by first calculating the area of the bounded region
at each value of s and then finding the rate of change of this area.
Two numerical approaches have been used to achieve this. Let

_A
ðnÞ
Rie;c denote the approximation of the left-hand side of Eq. (102)

using first a Riemann sum determined by using 2n equally spaced
grid points to approximate the integral and then a central-Euler

scheme to approximate the time-derivative, and let _A
ðnÞ
Sim;c denote

the approximation of the left-hand side of Eq. (102) using first
Simpson’s rule determined by using 2n equally spaced grid points
to approximate the integral and then a central-Euler scheme to ap-
proximate the time-derivative. The convergence of the left-hand
side of Eq. (102) using these two approaches is depicted in Fig. 5.

In Fig. 6, the values of _A
ð8Þ
TT ;

_A
ð8Þ
Rie;c, and _A

ð8Þ
Sim;c are compared to that

of _A
ð16Þ
TT , which, as is evident from Fig. 4(a), provides the closest

approximation of the right-hand side of Eq. (104). That _A
ð8Þ
TT and

_A
ð8Þ
Rie;c agree so well justifies the assertion (appearing immediately

after Eq. (9)) that the pairing between a differential chain and a
differential form can be thought of as a Riemann sum. The value

_A
ð8Þ
Sim;c is closer to _A

ð16Þ
TT than is the value of _A

ð8Þ
Rie;c, which is consist-

ent with the status of Simpson’s rule as a second-order scheme.

6.2 The Rate of Change of the Circulation Around an
Evolving Fractal Curve. We now consider a second example
involving a convecting differential 1-chain. First, consider the
boundary of the region bounded by hT and hB defined such that

~hTðnÞ :¼ ~hðn� 1=2; 3=5Þ;
~hBðnÞ :¼ �~hðn� 1=2; 3=5Þ

�
for all n 2 ½1=2; 3=2� (106)

For all natural numbers n and 0 � i; j � 2n � 1, let q and ar be
defined such that

qði; j; nÞ :¼ ði2�n þ 1=2; ~hði2�n; 3=5Þð2j2�n � 1ÞÞ (107)

arði; nÞ :¼ 2~hði2�n; 3=5Þ2�2n (108)

Notice that Eqs. (107) and (108) supersede Eqs. (96) and (98),
respectively. The boundary of the region defined with the func-
tions ~hT and ~hB is represented by the differential 1-chain

CR ¼ lim
n!1

X2n�1

i;j¼0

ðqði; j; nÞ; ðe1 � e2 � e2 � e1Þarði; nÞÞ (109)

We next consider the convecting chain generated by the reference
CR and convection f defined by

f ððn; fÞ; sÞ :¼ðn cos ĥsðn; fÞ � f sin ĥsðn; fÞ;
n sin ĥsðn; fÞ þ f cos ĥsðn; fÞÞ (110)

where ĥs and vs are defined such that

ĥsðn; fÞ :¼
ðs

0

jvsðn; fÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ f2

p dr;

vsðn; fÞ :¼
C 1�e

�n2þf2

4�s

� �
2pðn2þf2Þ ðne2 � fe1Þ;

9>>>>=>>>>;
for all ðn; fÞ 2 R2; s 2 ½0;T�

(111)

As the notation suggests, v denotes the velocity field associated
with the convection f. Notice that in Eq. (111) the notation intro-
duced in Eqs. (72) and (73) is used, but with t replaced by s. This
convection is associated with the Lamb–Oseen [25, 26] vortex
and C and � are dimensionless circulation strength and viscosity,
respectively. The evolving chain generated by CR and f is (see
Seguin and Fried [10])

Fig. 4 Convergence of the rate of change of area as given by the transport identity in the right-hand side of Eq. (104). (a) Plot of
the evolution of _A

ðnÞ
TT for different values of n, which correspond to the different approximations of the right-hand side of Eq. (104).

(b) Convergence of the rate of change of the area _ATT for different snapshots in time. Notice the logarithmic abscissa in (b).
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C ¼ lim
n!1

X2n�1

i;j¼0

ðf ðqði; j; nÞ; �Þ; ðe1 � e2 � e2 � e1Þarði; nÞÞ (112)

The transport theorem, in the form of Eq. (78), can be used to
compute the rate of change of the circulation of the velocity v
around the convecting loop C. After setting w :¼ v0 þ ivdv
¼ v0 þ ðrv�rv>Þv and using Eqs. (5) and (32), we have

ð
ð
=

C

vÞ
:

ðsÞ ¼
ð
=

CðsÞ
ðv0 þ ivdvÞðsÞ þ

ð
=
@CðsÞ
ðivvÞðsÞ (113)

¼
ð
=

CðsÞ
ws (114)

¼ lim
n!1

X2n�1

i;j¼0

ðws2;1ðf ðqði; j; nÞ; sÞÞ (115)

� ws1;2ðf ðqði; j; nÞ; sÞÞÞarði; nÞ (116)

Here wsi;j is the directional derivative of the ith component of ws
in the direction ej, i, j¼ 1, 2. For future reference, let

_C
ðnÞ
TT :¼

X2n�1

i;j¼0

ðws2;1ðf ðpði; j; nÞ; sÞÞ � ws1;2ðf ðpði; j; nÞ; sÞÞÞarði; nÞ

(117)

We numerically compute the rate of change of circulation _C
ðnÞ
TT for

different values of n, up to n¼ 8. We choose the dimensionless
viscosity �¼ 1 and dimensionless circulation strength C¼ 10. To
test the sensitivity of the results on the size of the integration time
step, computations are performed with different choices of the
dimensionless integration time step Ds. We find that Ds¼ 0.001 is
sufficiently small to yield time-step-size independent results. We
thus fix Ds¼ 0.001. The original fractal curve at s¼ 0, the
deformed fractal curve at s¼ 2 for n¼ 8, and streamlines of the
velocity field of the Lamb–Oseen [25, 26] vortex are shown in
Fig. 7(b).

Since the velocity field is initially curl-free and, as is evident
from Eq. (111), slowly diverges from this state, the rate of change

of circulation _C
ðnÞ
TT is 0 at s¼ 0, as shown in Fig. 7(a). Due to the

viscous damping of the Lamb–Oseen [25, 26] vortex, the circula-

tion and, thus, the rate of change of circulation _C
ðnÞ
TT changes in

time. The quantity _C
ðnÞ
TT is found to have a peak around s� 0.04 as

shown in the inset of Fig. 7(a). As s! 1, _C
ðnÞ
TT ! 0. The choice

of n associated with the spatial discretization—that is, the trunca-
tion of the infinite sum—is found to have the most influence on
the peak region, with smaller choices of n resulting in lower, and

slightly delayed peak values of _C
ðnÞ
TT. The results show convergent

behavior for increasing n. The values of _C
ðnÞ
TT after the peak region

are only marginally influenced by the choice of n.

6.3 The Rate of Change of the Energy of a Neo-Hookean
Material Undergoing a Discontinuous Deformation. Select
numbers x

8
> 0, y

8
> 0, and z

8
> 0 and consider the rectangular

reference domain

DR :¼ ½�x
; x
� 	 ½�y
; y
� 	 ½�z
; z
� (118)

The goal is to formulate a deformation of DR in which a crack ini-
tiates and propagates. More specifically, it is desired that at time t
a crack has opened up along the surface

St :¼ ½�v
t; v
t� 	 ½�z
; z
� (119)

in the (x, z)-plane, where v
8
> 0 is the given steady speed of

propagation of a crack that forms in the reference domain DR.
Toward this end, we utilize the function / defined consistent with

/ðx; tÞ ¼ 0:2v
texpð� x2

v2

t

2 � x2
Þ if jxj < v
t;

0 if jxj � v
t

8<: (120)

For each t, /ð�; tÞ is a bump function. The deformation f of DR is
given by

f ððx; y; zÞ; tÞ ¼
ðx;/ðx; tÞ þ ð1� /ðx; tÞ=y
Þy; zÞ if y > 0;

ðx;�/ðx; tÞ þ ð1� /ðx; tÞ=y
Þy=; zÞ if y < 0

�
(121)

Let Dt denote the spatial region occupied by the body at time t.
Where defined, we set

I1 :¼ trðrf>rf Þ (122)

I3 :¼ detrf (123)

Fig. 5 Convergence of the rate of change of the area for different snapshots in time using (a) Riemann sums and (b) Simp-
son’s rule. Notice the logarithmic abscissas in (a) and (b).
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Assuming a compressible neo-Hookean response, the free
energy-density w measured per unit volume in the spatial configu-
ration is given by

w ¼ l
2I3

I1 � 3� 2 log I3ð Þ þ j
2I3

ðI3 � 1Þ2 (124)

where l is the shear modulus and j is the bulk modulus, as found
in the book by Ogden [27]. The net free-energy E(t) of the system
at time t is given by

EðtÞ ¼
ð
Dt

wððx; y; zÞ; tÞ dx dy dzþ
ð
St

C dxdz (125)

where the integral over St is the contribution to the energy due to
crack formation and C is the energy required to extend the crack
by a unit length, measured per unit area in the spatial configura-
tion. The form of this energy is based on Griffith’s [28] model for
fracture, as formulated by Francfort and Marigo [29].

To render the energy dimensionless, we choose x
8
, v
8
, and C as

three characteristic quantities. Dimensionless space (n, f, g) and
time s variables may then be defined by

n ¼ x

x

; f ¼ y

x

; g ¼ z

x

(126)

and

s ¼ v
t

x

(127)

In terms of these dimensionless quantities, the reference domain
becomeseDR :¼ ½�1; 1� 	 ½�y
=x
; y
=x
� 	 ½�z
=x
; z
=x
� (128)

and the crack surface at time s is

eSs :¼ ½�s; s� 	 ½�z
=x
; z
=x
� (129)

It is also convenient to define a dimensionless counterpart ~f of the
deformation f by

~f ððn; f; gÞ; sÞ :¼ f ððx
n; x
f; x
gÞ; x
s=v
Þ
x


(130)

The effect of this deformation on the reference domain eDR is
depicted in Fig. 8.

Bearing in mind that I1 and I3 are unaffected by the nondimen-
sionalization, it is useful to define a dimensionless free-energy
density ~w by

~w ¼ lx

2I3C

I1 � 3� 2 log I3ð Þ þ jx

2I3C

ðI3 � 1Þ2 (131)

in which case the dimensionless net free-energy at dimensionless
time s is given by

~EðsÞ ¼
ð
eDs

~wððn; f; gÞ; tÞ dn df dgþ
ð
eSs

dn dg (132)

Notice that ~E and E are related by

~EðsÞ ¼ Eðx
s=v
Þ
x2

C

(133)

Fig. 6 Comparison of _A
ð8Þ
TT ;

_A
ð8Þ
Rie;c, and _A

ð8Þ
Sim;c with _A

ð16Þ
TT .

Fig. 7 (a) Rate of change of the circulation computed with the transport identity (117) for different n with dimension-
less integration time step Ds 5 0.001, dimensionless kinematic viscosity m 5 1, and dimensionless circulation C 5 10.
The inset in (a) shows a detailed view of the region around the peak of maximal rate of change of the circulation. (b)
Original fractal curve at s 5 0 and deformed fractal curve at s 5 2 for n 5 8 and C 5 10 along with streamlines of the ve-
locity field of the Lamb–Oseen [25, 26] vortex (dashed lines).
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The important dimensionless parameters that appear in Eqs. (132)
and (133) are

y

x

;

z

x

;

lx

C
; and

jx

C

(134)

For all s in [0, 1], any natural number n, and 0 � i; j; k � 2n � 1,
define n, f, g, c, and ar such that

nði; nÞ :¼ �1þ i21�n (135)

fði; j; s; nÞ :¼ �/ðnði; nÞ; sÞ � ½y
=x
 � /ðnði; nÞ; sÞ�ð2n�1 � jÞ2�nþ1 if 0 � j � 2n�1 � 1;

/ðnði; nÞ; sÞ þ ½y
=x
 � /ðnði; nÞ; sÞ�ðj� 2n�1Þ2�nþ1 if 2n�1 � j � 2n � 1

�
(136)

gðk; nÞ :¼ �z
=x
 þ 2z
i2
�n=x
 (137)

cði; j; s; nÞ :¼ �/0ðnði; nÞ; sÞj2�nþ1 if 0 � j � 2n�1 � 1;

/0ðnði; nÞ; sÞð1� ðj� 2n�1Þ2�nþ1Þ if 2n�1 � j � 2n � 1

�
(138)

arði; s; nÞ :¼ 8
z

x

½y
=x
 � /ðxði; nÞ; tÞ�2�3n (139)

Moreover, define q and a by

qði; j; k; s; nÞ :¼ ðnði; nÞ; fði; j; �; nÞ; gðk; nÞÞ (140)

aði; s; nÞ :¼ arði; s; nÞe1 ^ e2 ^ e3 (141)

It can be shown that the limit

J ¼ lim
n!1

X2n�1

i;j;k¼0

ðqði; j; k; �; nÞ; aði; �; nÞÞ (142)

of evolving chains converges (in the C1
2 norm) to the evolving

chain that represents the evolving domain. It can also be shown
that

Es@J ¼ lim
n!1

X2n�1

i;j;k¼0

ðqði; j; k; s; nÞ; cði; j; s; nÞe2 � aði; s; nÞÞ

GsJ ¼ lim
n!1

X2n�1

i;j;k¼0

ðqði; j; k; s; nÞ; a0ði; s; nÞÞ

Using the generalized transport theorem, Eq. (5), and Eq. (32), we
find that

_~EðsÞ ¼
ð
=

JðsÞ
~w0se1 ^ e2 ^ e3 þ

ð
=

EsJ

dð ~wse1 ^ e2 ^ e3Þ

þ
ð
=

Es@J

~wse1 ^ e2 ^ e3 þ
ð
=

GsJ

~wse1 ^ e2 ^ e3 þ
4z

x


(143)

¼ lim
n!1

X2n�1

i;j;k¼0

~w0ðqði; j; k; s; nÞ; sÞarði; s; nÞ
h

þ ~w;2ðqði; j; k; s; nÞ; sÞcði; j; s; nÞarði; s; nÞ
þ ~wðqði; j; k; s; nÞ; sÞar0ði; s; nÞ� þ 4z
=x
 (144)

Fig. 8 Snapshots of a cross section of the domain eDR in the (n, f)-plane at s 5 0.25. (a) The entire cross section [–1,
1] 3 [–1, 1]. (b) A detailed view [20.25, 20.15] 3 [20.25, 20.15] of the cross section showing the crack tip.

050802-14 / Vol. 66, SEPTEMBER 2014 Transactions of the ASME



where ~w;2 is the partial derivative of ~w with respect to f. For
future reference, let

_~E
ðnÞ
TT :¼

X2n�1

i;j;k¼0

~w0ðqði; j; k; s; nÞ; sÞarði; s; nÞ
h

þ ~w;2ðqði; j; k; s; nÞ; sÞcði; j; s; nÞarði; s; nÞ
þ ~wðqði; j; k; s; nÞ; sÞar0ði; s; nÞ� þ 4z
=x
 (145)

The rate of change of the dimensionless energy (145) is com-
puted numerically for different values of n up to n¼ 9. We choose
the referential dimensions in accord with x

8
¼ 1.0 m, y

8
¼ 1.0 m,

and z
 ¼ 1:0 � 10�3m, so that the dimensionless parameters y8/x8
and z8/x8 in Eq. (134) are respectively equal to 1.0 and 1:0 � 10�3.
Following Anand [30] and Groutos et al. [31], we choose material
parameters characteristic for rubber-like substances:

l ¼ 0:3MPa;

j ¼ 2:0 � 103MPa;

C ¼ 4:0 � 103J=m2

9>>=>>; (146)

In combination with the choice x8¼ 1.0 m, the choices of l, j,
and C in Eq. (146) yield the values of 7:5 � 10�5 and 0.5 for the
remaining dimensionless parameters lx8/C and jx8/C in Eq.
(134). Notice that the (nontruncated) rate of change (144) in this
example is exact in the sense that it can be evaluated at arbitrary
times without computing previous time steps, since it does not
depend on the time-history.

However, in the truncated case, there is a natural connection
between the space discretization and the time-discretization. In
particular, the size 2x
2

�n of one element in space, the crack prop-
agation speed v0, and the time step Dt are related by

Dt ¼ 2x
2
�n

v

(147)

Given a crack propagation speed v8, the criterion (147) can be
found from the requirement that physically reasonable informa-
tion may only be obtained at time steps for which the crack propa-
gates one mesh spacing further. That is, the discrete time step Dt
is the time the crack needs to propagate from one discrete space
point to the next discrete space point. Notice that technically,
through the choice of (120), the expression (145) allows for the

computation of _~E
ðnÞ
TT for arbitrary combinations of the space and

time steps, however, results for Dt < 2x
2
�n=v
 may contain spu-

rious behavior.
Figure 9 shows snapshots of _~E

ðnÞ
TT at discrete time steps in agree-

ment with Eq. (147). The results have been validated with the cor-
responding computations in the referential description. The rate of
change shows convergence with increasing n. For n¼ 6 and
larger, the results at the corresponding time steps are practically
indistinguishable, as can be seen from Fig. 9. However, in view of
the coupling (147) for increasing time resolution of _~E, it is also
necessary to add spatial points correspondingly. Interestingly, if
no particular resolution in time is required, n¼ 6 is sufficient to
predict the rate of change at the corresponding time steps with
very good accuracy. Notice that the good convergence at a rela-
tively small n compared to the n necessary in the previously dis-
cussed examples can be attributed to the absence of fractal
boundaries in the present example.

7 Looking Forward

We next discuss some possible applications of the roughened
transport theorem. For each of these examples, we state how the
transport theorem might be used and discuss some attendant diffi-
culties. This section is devoted more to posing interesting ques-
tions than to answering those questions.

One topic that is of interest to researchers in continuum physics
is the weakening of the regularity assumptions underlying the
characterization of continuous bodies. In the middle of the 20th
century, a continuous body was assumed, usually tacitly, to
occupy regions of space that were open with regular (in some
sense) boundaries. If pressed, researchers usually stated that such
a boundary should consist of the union of a finite number of
smooth surfaces. Later, Gurtin et al. [32] and Noll and Virga [33]
used geometric measure theory to specify classes of sets that are
appropriate for occupation by continuous bodies.6 The main idea
was to consider sets with boundaries that, while not necessarily
smooth, are required to have an exterior unit-normal almost every-
where (with respect to the Lebesgue areal measure). This condi-
tion allows for the computation of fluxes across the boundary and
the application of the divergence theorem. Recently, there has
been interest in considering even rougher sets to represent contin-
uous bodies and obtaining balance laws for such bodies. See, for
example, the work of Marzocchi [12], Rodnay and Segev [13],
S
^

ilhav�y [34], and Schuricht [35]. Marzocchi [12], at the end of his
work, used a weak formulation to sketch a path to writing balance
laws for a body represented by a differential chain. His balance
laws should hold for bodies with fractal boundaries that evolve in
a “nice” way—that is, by a convection. We hope that the rough-
ened transport theorem presented and discussed in the present
work will enable the formulation of balance laws for bodies that
do not evolve in such a way or may have rough boundaries.

7.1 Balance Laws for Rough Bodies. To illustrate the chal-
lenges associated with the formulation of balance laws for rough
bodies, it is instructive to begin by considering the principle of
conservation of mass. The other basic balance laws can be dis-
cussed in a similar way. Let BR be an open subset of a three-
dimensional Euclidean space and let f : E 	 I ! E be a continu-
ous mapping that is differentiable in time. We do not assume that
f is differentiable in space. Hence, f need not be a convection of
the type defined in Sec. 4. The open set BR represents a reference
for the body and f describes a deformation of the body. For all
open sets QR contained in BR, let Qt :¼ ftðQRÞ. Since f is only
continuous, the boundary of Qt can be very irregular even if QR is
smooth. We denote by Qt the differential chain corresponding to
the open set Qt. Since regularly evolving chains may represent
regions with irregular boundaries, it seems possible to represent
Q :¼ t 7!Qt as a regularly evolving differential chain. Whether or

Fig. 9 Comparison of
_~E
ðnÞ
TT over nondimensional time s for dif-

ferent resolutions n

6These are more suitable since they are, for example, stable under interactions.
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not this is actually possible is an interesting open question. If the
answer to this question is negative, it would be useful to determine
minimal assumptions on f necessary to ensure that Q is a regularly
evolving differential chain. To proceed, assume that Q is a regu-
larly evolving differential chain so we can apply the transport the-
orem. Let a scalar-valued function q of space and time represent
the mass density of the body. The principle of conservation of
mass states that for all parts QR of BR, and hence all correspond-
ing evolving chains Q,

ð
ð
=

Q

qÞ
:

ðtÞ ¼ 0 for all t 2 I (148)

By the roughened transport identity Eq. (68), Eq. (148) becomesð
=

Qt

qt
0 þ
ð
=

Et@Q

qt þ
ð
=

GtQ

qt ¼ 0 for all t 2 I (149)

where qtðxÞ ¼ qðx; tÞ for any x in Qt. If the deformation f were
smooth then

Ð
Et@Q qt þ

Ð
GtQ

qt could be replaced by
Ð
Q divðqtvtÞ,

where v is the velocity corresponding to f and, consistent with Eq.
(72), vtðxÞ ¼ vðx; tÞ for any x in Qt. As f is only continuous in
space, the divergence of the velocity is undefined and this substi-
tution cannot be made. However, since Eq. (149) must hold for all
evolving parts Q, some restriction on the density q is clearly
implied. The nature of this restriction is presently unknown. To
apply the theory of differential chains and the roughened transport
theorem to obtain local balance laws from global balance laws,
additional work must be done to investigate the condition(s) that q
must satisfy for Eq. (149) to hold for all Q.

7.2 Balances Laws for Evolving Surfaces. Besides obtain-
ing balances for evolving regions, it is also useful to obtain balan-
ces for evolving interfaces. The integral form of a surface balance
law for an evolving smooth surface S contains a term of the formð

A
/

:

(150)

where / is a density defined on the surface and A is an arbitrary
subsurface of S. Often the surface A does not evolve according to
a flow, as in situations where S corresponds to a shock or phase
interface. Moreover, there are settings where the surface is rough
and evolves in a nonsmooth fashion, as is clear from the works of
Gurtin [6], Catalan et al. [7], and Stanley [8]. It is tempting to
replace A in Eq. (150) with an evolving 2-chain A and the Rie-
mann integral with the modified integral associated with the
symbol

Ð
=, but there is a problem with proceeding that way. In gen-

eral, it is not possible to integrate a density over a differential 2-
chain; only 2-forms can be integrated. However, there are some 2-
chains over which it is possible to integrate a density. The task is
to find an appropriate subspace of chains with this property. To
expand a term of the form (150) when A evolves irregularly, it is
therefore necessary to modify the roughened transport theorem so
that it holds for evolving chains with additional properties and,
thus, make it is possible to integrate a density over the chain at
each time. Exactly what subspace of evolving chains would be
appropriate here is an open question. However, in her work on the
Plateau problem, Harrison [36] proposes a subspace that might
prove valuable in this context.

Although the roughened transport theorem has potential appli-
cations in the formulation of balance laws in continuum physics,
further developments in the theory of evolving chains will be

necessary before tangible progress can be made. We hope that this
paper will inspire researchers to address the underlying challenges.
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